Geothermal power is the cleanest, cheapest, most accessible!
- There are many different ways to derive energy.
- Each of these methods has different relationships with the environment
- Each of these methods has different costs and different benefits
- Each of the these methods has different pros and cons.
A partial list of methods; oil, coal, shale, wood, gas, Biofuels (a. food crop, b. hemp crop c. algae) Solar, Thermal Solar, Wind, Tidal, Geothermal, Hydrogen, Hydrolic, Zero Point, Nuclear.
Oils relationships with the environment are
a. oil is ancient organic material that has undergone geological processes.
b. oil is removed from the ground via oil wells. Ie oil is mined from the Earth.
c. oil is burned in order to get heat and chemical reaction to create the energy.
d. burning it creates smoke. the smoke is toxic. it is multiply toxic to the ecosystem in multiple ways.
e. its causing global warming
f. it causes cancer
g. it causes acid rain
h. thus it hurts humans personally and the whole ecosystem as whole in these different ways.oil costs a certain amount of money to obtain from the earth, depending on how deep it is and at what pressure it is under.
oil costs a certain amount of money to refine and process, as well as to transport.
The pros of oil are that ;
a. it is accessible with very primitive levels of technology
b. our current energy infrastructure is based on oil
c. oil costs less than biofuels or, at least, it used to.
d. oils over all cost benefit analysis remains do-able from the perspective of economics alone.The cons against oil are
a. oil is actually very expensive as technology compared to other forms of energy in which initial
costs render yields not limited by physical quantities. Solar power stations, Wind, and Geothermal all provide energy options which
are simply cheaper over the long term.
b. oil pollutes the ecology as mentioned in its environmental analysis above.
c. that pollution will cause the extinction of life on earth as we know it should it continue.
d. we have already reached a tipping point where we have raised the global temperature so high that the new larger contributor to
greenhouse gasses is the ice that is being melted.
e. thus we need solutions to reverse global warming, or, our civilization is doomed.Coal. The specifics change, but Coal, like oil, is an ancient organic substance exposed to geological processes, mut be burned, and thus
contributes to pollution and global warming.oil Shale and coal Shale. Similar to oil and coal or extensions of them, shale is harder to mine and harder to extract oil from.
thus it costs more to process.Biofuels. The difference between biofuels and oil or coal is that biofuels have not been exposed to geological processes, but rather,
similarly effecting technological processes.
a.Biofuels still have toxic smoke which pollutes and which contributes to global warming
b. Biofuels trade energy shortage and economic stress for food shortage and economic stress, thus creating c +d
c. Biofuels create food shortages, hunger, and contribute to global poverty
d. Biofuels make food more expensive.Solar Power
a. solar power is derived from the suns light and chemical processes.
b. Solar panels are a permanent fixture which will continue to derive energy whenever the sun shines.
c. Solar panels have real but comparatively very tiny environmental costs.
d. Solar panel technology is up to date and evolved, no more research is actually required.
e. assorted pundits and candidates and politicians and so forth like to tell us that they favor more research for solar power.
Thats a secret unsecret way of saying that they don't support employing it as a real world solution, because solar power has worked
and has been feasible and economically viable for over 20 years.
f. Solar power is derived at a specific rate depending on the size of the panel, the efficiency of the absorption of the sunlight, and the amount of
sunlight available.
g. Solar power does better at high altitudes because theres less atmospheric interference.
h. Solar Power has very low yields per physical system cost. In order to run a car on Solar energy, you have to panel the entire car,
and in order to run your house on solar energy, you would have to panel your entire rooftop and buy energy saving appliances.
i. Solar power is most attractive and useful in a whole energy strategy because it is uniquely mobile. Geothermal wells or Wind
power or tidal power (for obvious reasons) won't run a car directly.
j. Solar power could in theory be used to solve the energy crisis almost by itself, by paneling over a very large surface area. This surface area
has been calculated variously, with low estimates ranging in 10 by 10 miles, and high estimates ranging upto 200 by 200 miles.
h. The problem with this is that the cost/ benefit analysis shows us that this would be very expensive when compared to a holistic energy strategy.
i. Solar power has very low yields when compared to geothermal power.Thermal Solar. Thermal Solar is a variation of Solar power with a much cheaper cost, a much lower per square foot yield, and operating at a much simpler technology level.
a. about 100 miles by 100 miles (median estimate) of Thermal solar paneling could in theory meet our energy needs.
b. Thermal Solar can be done in such a way that it has lower materials costs and lower materials environmental impact.
c. Thermal solar involves using light to heat a liquid which creates energy by pushing a turbine when the fluid expands.Wind Energy.
a. Wind energy is derived from creating large turbines called wind mills.
b. Wind mills are generally very large affairs.
c. The larger a windmill is, the more energy it creates relative to its overall material cost.
d. This means that the cost/ benefit analysis shows that larger windmills are cheaper.
e. Windmills create medium yields of energy when they are operating.
f. One good large windmill can probably meet the energy needs for perhaps a dozen homes.
g. The USA could in theory meet all of its energy needs via wind power, if we invested heavily also in enormous
distribution network infrastructure.
h. The USA is rich in wind energy compared to most places on the earth.
i. the problem with windmills is downtime when theres no wind.
j. This is significantly less a problem than with solar downtime due to no sun.
k. Wind and Solar together as a team can capitalize on the two extremes of climate, and should thus be employed
alternately depending on the location one wishes to provide energy for.
l. for instance, Solar power is better in New Mexico, Arizona, California, Texas, And sunny places.
J. And yet Wind power is better in places like New Jersey, Oregon,...places alongside the Canada Border.
k. The other problem with wind power is that it can create quite an eye sore to look at.
l. Wind power also can be very devastating to local bird populations.
m. Wind and Solar might be good tandem partners for cities like Denver, where theres lots of wind and lots of sun,
but not usually at the same time except for when it is.
This allows such a system to generate power in the sunny months with solar and in the winter months with wind.Tidal Power
a. Tidal power is derived much like wind power is, from the movement of water instead of air.
b. Tidal power is slightly higher in potential yields because water is denser.
c. Tidal power would have to be done more or less on remote beaches , probably in large fenced
areas to protect the systems from animals and animals and humans from the systems.
d. Tidal power is obviously only viable on the coastlines of oceans or very large bodies of water such as lakes.
e. Tidal power could in theory meet all of our energy needs.
f. the cost/ benefit analysis for tidal power is a bit murky because its a mostly unexplored technology.
g. however, proof of concept units do exist and the technology is very simple.
h. tidal power has problems due to the corrosive nature of salt water and erosion.
i. Tidal power is unpopular because it ruins one beach per facility.
j. Most accessible tidal power exists in the energy of waves.
k. Cost/ benefit analysis shows that tidal power can be done out at sea, but it becomes increasingly more expensive the further out
you go to get the power back to land.
l. Tidal power is probably a good solution for arctic regions which don't get much sun, and whose wind conditions might on some occasions be too intense,
pulling windmills down.
m. Along with Solar power and Wind power, tidal power provides a third leg of medium level yield energy for low materials cost in situations where
geothermal power would be too expensive.Geothermal Power
a. Geothermal power is energy derived from the heat of the earth.
b. that heat is on average several miles beneath the surface.
c. However, there is a lot of variance in how deep that heat is, and every state has regions where that heat is within a few hundred meters of the surface.
d. Geothermal power like wind power becomes cheaper per materials cost the larger the plant is.
e. Geothermal power has very high potential yields, and is in fact competitive with nuclear power in terms of sheer yield.
f. Geothermal power plants could in theory be built with higher energy yields than nuclear power plants. However, this is not advised or advisable, due to
potential tectonic stresses such high energy plants could create.
g. in the range around 100th or even 1 tenth the yield energy of a nuclear power station, geothermal power stations could be built which would have
virtually no impact on tectonic stresses.
h. Tectonic stress is an important variable. Frequently geothermal power is most accessible along fault lines. However, these should be ignored for
caldera like situations where the system is not contributing or in danger due to tectonic stresses.
i. There are many different ways of configuring a geothermal power station, and only one which this author supports. This is called double ci